Adsorption mechanism of selenate and selenite on the binary oxide systems.
نویسندگان
چکیده
Removal of selenium oxyanions by the binary oxide systems, Al- or Fe-oxides mixed with X-ray noncrystalline SiO(2), was previously not well understood. This study evaluates the adsorption capacity and kinetics of selenium oxyanions by different metal hydroxides onto SiO(2), and uses X-ray absorption spectroscopy (XAS) to assess the interaction between selenium oxyanions and the sorbents at pH 5.0. The binary oxide systems of Al(III)- or Fe(III)-oxides mixed with SiO(2) were prepared, and were characterized for their surface area, point of zero charge (PZC), pH envelopes, X-ray diffraction analysis (XRD), and then macro-scale adsorption isotherm and kinetics of selenite and selenate, micro-scale adsorption XAS. The adsorption capacity of selenite and selenate on Al(III)/SiO(2) is greater than on Fe(III)/SiO(2). Adsorption isothermal and kinetic data of selenium can be well fitted to the Langmuir isotherm and pseudo-second-order kinetic models. Based on simple geometrical constraints, selenite on both the binary oxide systems forms bidentate inner-sphere surface complexes, and selenate on Fe(III)/SiO(2) forms stronger complexes than on Al(III)/SiO(2).
منابع مشابه
Adsorption Mechanisms and Transport Behavior between Selenate and Selenite on Different Sorbents
Adsorption of different oxidation species of selenium (Se), selenate (SeO4) and selenite (SeO3), with varying pHs (2-10) and ionic strengths (I=0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., innerand outer-sphere complex). In addition t...
متن کاملHigh efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks.
A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and selenite, of all zirconium-based MOFs st...
متن کاملAdsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface.
Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO4(2-) and selenite (SeO3(2-) o...
متن کاملMacroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid-water interface of gamma-Al(2)O(3).
The interaction of selenate, selenite, and chromate with the hydrated surface of gamma-Al(2)O(3) was studied using a combination of macroscopic pH edge data, electrophoretic mobility measurements, and X-ray absorption spectroscopic analyses. The pH edge data show generally increased oxyanion adsorption with decreasing pH, and indicate ionic strength-(in)dependent adsorption of chromate and sele...
متن کاملKinetics of Selenate and Selenite Adsorption/Desorption at the Goethite/Water Interface
w Kinetics and mechanisms of selenate and selenite adsorption/desorption a t the goethitelwater interface were studied by using pressure-jump (p-jump) relaxation with conductivity detection at 298.15 K. A single relaxation was observed for selenate Se0:adsorption. This relaxation was ascribed to Se0,2on a surface site through electrostatic attraction accompanied simultaneously by a protonation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 43 17 شماره
صفحات -
تاریخ انتشار 2009